Convexity in Symplectic Geometry: The Atiyah-Guillemin-Sternberg Theorem

نویسنده

  • Ana Rita Pires
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delzant-type classification of near-symplectic toric 4-manifolds

Delzant’s theorem for symplectic toric manifolds says that there is a one-to-one correspondence between certain convex polytopes in Rn and symplectic toric 2n-manifolds, realized by the image of the moment map. I review proofs of this theorem and the convexity theorem of Atiyah-Guillemin-Sternberg on which it relies. Then, I describe Honda’s results on the local structure of near-symplectic 4-m...

متن کامل

Convexity of multi-valued momentum map

Given a Hamiltonian torus action the image of the momentum map is a convex polytope; this famous convexity theorem of Atiyah, Guillemin and Sternberg still holds when the action is not required to be Hamiltonian. Our generalization of the convexity theorem states that, given a symplectic torus action, the momentum map can be defined on an appropriate covering of the manifold and has as image a ...

متن کامل

A Convexity Theorem for Torus Actions on Contact Manifolds

We show that the image cone of a moment map for an action of a torus on a contact compact connected manifold is a convex polyhedral cone and that the moment map has connected fibers provided the dimension of the torus is bigger than 2 and that no orbit is tangent to the contact distribution. This may be considered as a version of the Atiyah Guillemin Sternberg convexity theorem for torus action...

متن کامل

Examples of Non-kähler Hamiltonian Torus Actions

An important question with a rich history is the extent to which the symplectic category is larger than the Kähler category. Many interesting examples of non-Kähler symplectic manifolds have been constructed [T] [M] [G]. However, sufficiently large symmetries can force a symplectic manifolds to be Kähler [D] [Kn]. In this paper, we solve several outstanding problems by constructing the first sy...

متن کامل

A Personal Tour Through Symplectic Topology and Geometry

(i) Gromov’s Compactness Theorem for pseudo-holomorphic curves in symplectic manifolds ([23]) and the topology of symplectomorphism groups of rational ruled surfaces (sections 2 and 3, references [1, 2]). (ii) Atiyah-Guillemin-Sternberg’s Convexity Theorem for the moment map of Hamiltonian torus actions ([9, 25]) and Kähler geometry of toric orbifolds in symplectic coordinates (sections 4 and 5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007